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Abstract

A digitized image is viewed as a surface over the xy-plane. The level curves of this
surface provide information about edge directions and feature locations. This paper
presents algorithms for the extraction of tangent directions and curvatures of these
level curves. The tangent direction is determined by a least-squares minimization over
the surface normals (calculated for each 2 × 2 pixel neighborhood) in an averaging
window. The curvature calculation, unlike most previous work on this topic, does not
require a parameterized curve, but works instead directly on the tangents across ad-
jacent level curves. The curvature is found by fitting concentric circles to the tangent
directions via least-squares minimization. The stability of these algorithms with re-
spect to noise is studied via controlled tests on computer generated data corrupted by
simulated noise. Examples on real images are given which show application of these
algorithms for directional enhancement, segmentation, and feature point detection.



1 Introduction

An image may be viewed as a surface h(x, y) over the xy-plane, where peaks in the
surface correspond to light areas of the image and valleys correspond to dark areas.
The topological properties of this surface are useful in many applications [1, 2]. In
particular, the level curves contain information which can be used in adaptive pro-
cessing of the image for enhancement and pattern recognition. Tangents to the level
curves run parallel to ridges in the image, so the tangent directions can be used for
edge detection and enhancement. For example, obtaining this directional information
is a necessary step in the processing of fingerprints for automated identification [3, 4]
and for orientation specific filtering [5].

There are different approaches to extracting directional information. One common
technique is to use an ideal edge as a template to detect the presence of an edge and
to determine its orientation. Hueckel [6] and O’Gorman [7] used a modified form of
this approach with least-squares minimization to match against an edge of arbitrary
orientation. Kawagoe and Tojo [3] used a different method in their work with digitized
fingerprints. On each 2 × 2 pixel neighborhood they made a straight comparison
against 4 edge templates to extract a crude directional estimate, which was then
arithmetically averaged over a larger region to obtain a more accurate estimate. Our
approach uses a gradient-type operator to extract a directional estimate from each
2×2 pixel neighborhood, which is then averaged over a larger region by least-squares
minimization to control noise.

Curvature of level curves is sensitive to broader topological properties of the image
that can be used for feature detection and identification. For example, curvature is
large near corners and peaks in the image, which are typical feature points used
for pattern recognition [8]. Most previous work on curvature determination ([9], for
instance) has centered on finding the curvature of a single parameterized curve that
has been previously extracted from the image by a separate algorithm (a chain code
algorithm, for example). Adjacent level curves, on the other hand, locally form a
family of parallel curves. Our algorithm extracts curvature using data determined by
these curves. This is accomplished without curve parameterization by fitting a family
of concentric circles to the extracted tangent directions via least-squares minimization.

The work [10] of Parent and Zucker is along similar lines. (See also [11].) They
also extract tangent directions and curvature directly from the image without curve
parameterization. In their work the tangent directions are quantitized to represent
finite ranges. At each point in the image and for each of the allowed directions a
probability is assigned. This probability is determined from two components. The
first component is the result of convolutions with local “line detector” operators. The
second component is a curvature compatibility factor, which measures how closely the
local tangent directions model a smooth flow. The tangent directions are adjusted
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using an iterative relaxation approach. This algorithm goes further by using the
tangent and curvature information to essentially extract curve traces. It is actually
an integrated curve extraction algorithm.

The algorithm of Parent and Zucker assumes the existence of curves in the image
and it is optimized towards the extraction of these curves. The algorithm we present
does not assume the existence of curves and does not aim to extract them. It extacts
only the tangent directions and curvature for further processing by other algorithms.
It will work on any image possessing smooth level curves. Moreover, our algorithm
directly extracts the directional information using least-squares minimization—no
iterative processing is performed. Thus our algorithm is considerably less complicated
and should be much faster than the algorithm of Parent and Zucker. On the other
hand, the algorithm of Parent and Zucker explicitly handles curve intersections, an
event our algorithm cannot interpret since it does not deal with curve traces. However,
our algorithm will find curve intersections to have large curvature, so such events can
be managed during subsequent processing.

In addition to the presentation of algorithms for the extraction of tangents and
curvatures from level curves in digitized images, we show results of controlled tests
of our implementation of these algorithms on computer generated data corrupted
by simulated noise. Example applications are also provided showing the use of the
tangent and curvature information in the image processing of fingerprints, materials
microstructures, printed circuit boards, and radiographs.

2 Problem statement

Let us first introduce some terminology. Fig. 1 shows three level curves with tangent
and curvature vectors marked. Let P be a point in the xy-plane as indicated and
consider the level curve passing through that point. Let ~r(s) be a parameterization
by arc length of this level curve, with ~r(0) = P . The derivative ~r ′(0) is the tangent
vector to the level curve at point P . We are interested only in the unoriented
direction of this vector, since both its magnitude and sign (+ or -) depend upon the
parameterization. Choosing arc length parameterization forces the magnitude of ~r ′(t)
to 1, which makes the second derivative, ~r ′′(0), perpendicular to the tangent vector
with magnitude proportional to the rate of change in direction of the tangent vector.
The vector ~r ′′(0) is called the curvature vector for the level curve at the point P .
The direction of ~r ′′(0) is towards the center of the curvature of the level curve ~r(s),
and the magnitude of ~r ′′(0), called the curvature of the level curve, is equal to the
reciprocal of the curvature radius. This is evident in Fig. 1 where the magnitudes of
the illustrated curvature vectors are largest on the inner level curve and smallest on
the outer level curve.

2



We have so far assumed that the level set at the point P is one dimensional.
However, if P corresponds to a local extrema or plateau, then the level set will be
0 or 2 dimensional, respectively. In this case it makes no sense to talk of a “level
curve”, and accordingly the tangent and curvature are not defined. The algorithms
described in this paper detect such occurrences.

In a digitized image the image values are only known on a discrete set of points (the
sample nodes), so the curve ~r(s) and its derivatives can only be approximated. Rather
than attempting to approximate ~r ′(s) and ~r ′′(s) at the point P , we find an averaged
value over a rectangular window around P using least-squares minimization. The
effects of random noise are minimized in the average, so this method is noise tolerant.
The choice of window size is application specific, depending on the size of the features
of interest (with respect to the pixel size) and the noise level. There is generally a
tradeoff between noise tolerance (large windows) and precision (small windows).

3 Tangent vector calculation

3.1 Method outline

At each point in the averaging window we calculate a vector ~n that is normal to the
surface z = h(x, y). The tangent vector to the level curve at this point (if defined)
lies in the xy-plane and is perpendicular to the normal. The averaged tangent vector
for an averaging window is that (unit) vector in the xy-plane which comes closest
to being perpendicular to all the surface normals in the window. We could average
the tangents directly, but there are advantages to working with the surface normals.
Consider, for example, the edge function defined by

g(x, y) =

{
1 if y ≥ 0
0 if y < 0

which is a unit step with edge along the x-axis. Let h(x, y) be a smooth approximation
to g(x, y). Fig. 2 is an illustration of this surface and several of the surface normals.
Away from the x-axis the normals to h(x, y) are parallel to the z-axis, and accordingly
the tangents are undefined. As one moves near the x-axis, the normal vectors tilt
away from the z-axis. If the approximation of h(x, y) to the step function g(x, y)
is very tight, then along the x-axis the normal vectors to the surface h(x, y) will be
nearly perpendicular to the z-axis. In particular, the steeper the surface the smaller
the angle between the surface normal and the xy-plane. Since noise corrupts shallow
edges more easily than steep edges, we want to weight normals from steep edges
more heavily in the average than normals from shallow edges. Thus there are two
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advantages in working with the normal vectors: the normal vectors are always defined,
and they carry information which is used to weight the average.

Of course, in a digitized image the function h(x, y) is not known at every point
in the xy-plane. Rather the value is known (with limited precision) on a finite grid
of points, called the sample nodes. To simplify our discussion we shall assume that
these nodes are evenly spaced on a square mesh, although the algorithm is easily
adapted to other geometries. We call a set of 4 nodes that are corners of a grid-
minimal square a 2x2 neighborhood.

Our approach to calculating the tangent vector in a digitized image consists of two
steps. First we estimate the surface normal at the center of each 2x2 neighborhood
with the normal to a plane fitted through the image values at the 4 sample nodes.
We refer to this as point normal determination. These normals are grouped into
(possibly overlapping) regions called tangent windows. The second step consists
of finding, for each tangent window, a vector ~u lying in the xy-plane that is nearly
perpendicular to all the normals in that window. This vector is called the averaged
tangent vector.

3.2 Point normal determination

Let (x1, y1), (x2, y2), . . . , (xm, ym) be a collection of m sample nodes in the xy-
plane, and let a1, a2, . . . , am be the image values at these nodes. We fit to these
values a plane p(x, y) of the form p(x, y) = −n1x− n2y + c, which has normal vector
~n = (n1, n2, 1). (The digitized values are restricted to a finite range, insuring that ~n
will not be perpendicular to the z-axis.) We want to select values for n1, n2, and c to
minimize the sum of the squared difference of the image values with the plane values
over the m sample nodes. That is,

min
n1,n2,c

∑
sample

nodes

|h(x, y)− p(x, y)|2

= min
n1,n2,c

∥∥∥∥∥∥∥∥∥∥


a1

a2
...

am

−


−x1 −y1 1
−x2 −y2 1

...
...

...
−xm −ym 1


 n1

n2

c


∥∥∥∥∥∥∥∥∥∥

2

, (1)

which is a standard least-squares minimization problem (see [12]). Let us set ~w1 =
(−x1,−x2, . . . ,−xm)T , ~w2 = (−y1,−y2, . . . ,−ym)T , and ~w3 = (1, 1, . . . , 1)T . Then
this minimization problem can be viewed as finding that (m-dimensional) vector in
the span of {~w1, ~w2, ~w3} which is closest to the vector ~a = (a1, a2, . . . , am)T . This
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is given simply by the orthogonal projection of ~a onto the subspace spanned by
{~w1, ~w2, ~w3}.

For example, consider the 2x2 neighborhood depicted in Fig. 3. Here m = 4, and
~w1 = (−1, 1, 1,−1)T , ~w2 = (−1,−1, 1, 1)T , and ~w3 = (1, 1, 1, 1)T . Since the ~wi’s are
orthogonal and ‖~wi‖2 = 4 for each i = 1, 2, 3, it follows that the minimizing vector is

〈~a, ~w1〉~w1

4
+
〈~a, ~w2〉~w2

4
+
〈~a, ~w3〉~w3

4
=

−a1 + a2 + a3 − a4

4
~w1 +

−a1 − a2 + a3 + a4

4
~w2 +

a1 + a2 + a3 + a4

4
~w3

where 〈· , ·〉 denotes the usual scalar product.
Comparing to Eq. 1, we see that the minimizing values are

n1 =
−a1 + a2 + a3 − a4

4

n2 =
−a1 − a2 + a3 + a4

4
(2)

c =
a1 + a2 + a3 + a4

4

Therefore we approximate the surface normal at the center of the 2x2 neighborhood
by ~n = ((−a1 + a2 + a3 − a4)/4, (−a1 − a2 + a3 + a4)/4, 1))T (the value of c is irrele-
vant). Note that the magnitude of this vector depends on the angle it makes with the
xy-plane. If the normal is parallel to the z-axis then the magnitude is minimized to 1,
and the magnitude grows as the angle with the xy-plane is decreased. This variation
is used to weight the average discussed in the next section.

Of course, one can choose a neighborhood larger than 2x2 (see [13]). The advan-
tages of a larger neighborhood are increased directional accuracy and noise tolerance.
Noise tolerance is not an issue here, since we do an independent averaging step to
control noise (Section 3.3). Directional accuracy may be a factor, however, depending
on the type of edges examined. It is well known that gradient type operators such
as this one have orientation biases due to discretization. A thorough study of this
effect for step edges was done by Kitchen and Malin [14]. (Refer also to O’Gorman
[7], which proposes the use of Walsh functions for edge detection.) Nonetheless, we
found this effect to be insignificant in our work, and for the smooth edges studied in
Section 3.5 the orientation bias was found to be less that 3◦. Moreover, larger neigh-
borhoods increase the computational requirement and can have problems relating to
edge curvature [11].
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3.3 Determining the averaged tangent direction

We want next to find a vector (the unit tangent vector) that is nearly perpendicular
to the collection of normal vectors {~nk}, where the index k runs over all 2x2 neigh-
borhoods in the tangent window. One approach is to calculate the tangent direction
to each normal, express that direction as an angle between say 0◦ and 180◦, and then
calculate the arithmetic average these directions. This is essentially the method used
by Kawagoe and Tojo [3]. There are some difficulties with this procedure, however.
For example, notice that the average of the directions 0◦ and 178◦ should be 179◦

(not 89◦). (See [15] for background on managing directional data.) We take instead
a least-squares minimization approach. First we discard the z-components (which
are identically one) to get the collection {~vk}, where ~vk = (nk

1, n
k
2)

T . Note that the
magnitude of the vector ~vk is given by the cotangent of the angle between the normal
vector ~nk and the xy-plane. Let ~u = (u1, u2)

T be the unit tangent vector that we
want to determine. Formally,

minimize
∑
k

|〈~vk, ~u〉|2

subject to ‖~u‖ = 1

(See [12].)
Let F (u1, u2) be the minimization function, i.e., F (u1, u2) =

∑
k |〈~vk, ~u〉|2. Let

A =
∑

k(v
k
1)

2, B =
∑

k(v
k
2)

2, and C =
∑

k vk
1v

k
2 . Then

F (u1, u2) = (u1, u2)

(
A C
C B

)(
u1

u2

)
(3)

Thus F is the quadratic form associated with the (real) symmetric matrix

S =

(
A C
C B

)
The eigenvalues for this matrix are the extremal values of the function F for

‖~u‖ = 1. Let us order the eigenvalues so that λ1 ≥ λ2. Then the minimum value
for F is λ2, and the corresponding eigenvector is the solution to the minimization
problem, i.e., yields the averaged tangent direction. (If λ1 = λ2 then we have the
degenerate case where there is no preferred direction. This indicates a peak or plateau
in the image, or else a region that is overcome by random noise.)

The eigenvalues for S are

λ1 =
1

2

(
(A + B) +

√
(A−B)2 + 4C2

)

λ2 =
1

2

(
(A + B)−

√
(A−B)2 + 4C2

)
(4)
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If C = 0 then the original matrix S is diagonal and the eigenvector corresponding to
λ2 is either (1, 0)T or (0, 1)T , depending on whether A < B or B < A. Otherwise one
has the relation

u2 = u1(λ2 − A)/C

= u1

B − A

2C
−
√(

B − A

2C

)2

+ 1


which defines the averaged tangent direction.

3.4 Region contrast and consistency

In addition to determining the tangent direction, the calculations in the preceding
sections also give measures of region contrast and tangent consistency. For example,
if the contrast in a region is large, then many of the normal vectors calculated in Sec-
tion 3.2 will lie close to the xy-plane, and the projected vectors ~vk (from Section 3.3)
will be large. Conversely, if the contrast is small, then most of the normal vectors
will be nearly parallel to the z-axis, and the vectors ~vk will be small. Thus the region
contrast is gauged by

CR =
∑
k

∥∥∥~vk
∥∥∥2

=
∑
k

(nk
1)

2 + (nk
2)

2 = A + B

where A and B are defined in Section 3.3. Normalization of CR requires knowledge of
the maximum possible magnitude of the normal vectors (which depends on digitiza-
tion restrictions) in addition to the size of the averaging window (i.e., the number of
vectors in the summation). For example, in our system the digitized values lie between
0 and 255, and suppose we choose a 9×9 averaging window. The maximum value for
any ‖~vk‖ is 255/2 (refer to Eq. 2), and there are 8×8 = 64 2x2 neighborhoods in the
averaging region, so the maximum possible value for CR is Cmax = (255/2)2 × 64.
The normalized contrast score is defined by CN = CR/Cmax.

Tangent consistency is measured by the extent to which the averaged tangent
direction ~u is perpendicular to the collection ~nk. This provides an estimate of the
noise level in the averaging window. Let ER denote the sum of the squared error,

ER =
∑
k

|〈~nk, ~u〉|2 =
∑
k

|〈~vk, ~u〉|2

which is of course just the function F of Section 3.3 evaluated in the averaged tangent
direction. This minimal value of F is given in Eq. 4, i.e., ER = λ2. This value can be
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normalized by dividing by CR. A value of zero indicates a perfect fit (all the vectors ~nk

are perpendicular to the averaged tangent direction), whereas ER/CR = 1 indicates
that all the vectors ~nk are parallel to the averaged tangent direction—the worst case.
Of course the latter does not occur since in this case selecting the perpendicular
direction as the tangent direction gives a perfect fit. In fact, the minimization insures
that ER/CR ≤ 1/2. Therefore the normalized consistency error is defined to be
EN = 2ER/CR.

Combined, the two parameters CN and EN give a measure of the reliability of the
calculated tangent direction. Ideally the region will be high contrast (large CN) with
high consistency (small EN).

3.5 Controlled tests

To test the stability of the tangent calculation and the usefulness of the consistency
score EN , we performed experiments with two idealized surfaces (a smooth edge and
a sinusoid) corrupted by simulated noise. The results are displayed in Tables 1 and
2. Part (a) in each table presents the results using a small (9 × 9) tangent window,
while part (b) shows the results using a larger (19 × 19) tangent window. The data
in Table 1 (a) and Table 2 (b) are represented graphically in Fig. 5 and Fig. 6,
respectively. Graphs of the data in Table 1 (b) and Table 2 (a) are very similar to
Fig. 5, and so are not reproduced here. The reader may examine the tabular data for
details.

The first surface for which we performed tests was a smooth edge. The profile for
this edge was defined by

h(t) =

{
128 + 48(1− e−2.3t) if t ≥ 0
128− 48(1− e2.3t) if t < 0

where t is the distance (in pixels) from the center of the edge. This profile has an
edge transition range, measured from the 10% down points, of two pixels. We used
this profile to generate a smooth step (similar to that depicted in Fig. 2) through the
center of a tangent window at an angle of 40◦. The resulting pixel values, after the
required rounding to integer, are shown in Fig. 4. Noise was added to this in the
form of a sequence of computer generated uncorrelated zero-mean Gaussian random
variables.

Table 1 (a) shows statistics for the tangent calculation using a 9 × 9 tangent
window. (The window dimensions are chosen odd so that the center of the window
will correspond to a pixel sampling point.) The first column lists the signal-to-noise
ratio (SNR), defined here as the ratio of the variance of the original (no noise) image
to the variance of the added noise. For each SNR level, 104 trials were performed, and
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the mean and standard deviation of the tangent angle, consistency score, and contrast
score were collected. Notice that even in the noise-free case, the angle calculation is
0.4◦ off from the true value of 40◦. This is due to the discretization of the edge and
because the point normal calculation works under the assumption that a plane is a
good local approximation to the surface. The magnitude of the error depends upon
the angle and the shape of the edge. As shown in [14], this error can be significant
across a step edge. The effect is less noticeable across a smooth edge. In fact, for
the smooth edge described above, the calculated angle differs from the true angle by
less than 3◦ regardless of the edge orientation. Nonetheless, one could improve the
directional accuracy by improving the point normal calculations (Section 3.2), either
by increasing the size of the local neighborhood or by using a higher order surface
(instead of a plane), albeit at the cost of increased computation time. The contrast
scores are not affected by the orientation of the edge, and the effect of edge orientation
on the consistency (error) scores is less than 10%.

The data from Table 1 (a) are displayed graphically in Fig. 5, where the error
bars denote one standard deviation from the mean. (The distributions about the
mean are not quite Gaussian, but are close enough so that roughly 68% of the trials
fell within one standard deviation of the mean, and approximately 95% fell within
two standard deviations.) We see from the graph that the mean direction value is
nearly independent of the noise level, but the variation of the direction from the
mean increases with increasing noise, as one expects. Let us now increase the tangent
window size to 19 × 19, so that the window contains (roughly) 4 times as many
pixels as before (Table 1 (b)). Offhand, one expects the standard deviation of the
angle calculation to drop by 1/2. Comparing the results of part (a) with part (b) from
Table 1, one sees that this is not the case. Refer back to Fig. 4. In this tangent window,
directional information can only be obtained along the edge, which is confined to a
narrow strip passing through the center of the window. Any directional information
obtained in the larger flat regions on either side of the edge can only be due to noise.
Increasing the dimensions of this window to 19× 19 will quadruple the flat area, but
the area of the strip containing the edge only doubles. So in the larger window we
have twice as much true directional information and four times as much noise. The
two effectively cancel, as we see from the results in Table 1, although for small noise
levels the larger window is somewhat preferable.

This effect disappears if directional information is present throughout the tangent
window. Table 2 gathers the results for the same calculations as Table 1, but with a
sinusoid replacing the edge. (The results for the larger window are shown graphically
in Fig. 6.) Specifically, we used

h(x, y) = 128 + 48 sin
(

π

5
(y cos θ − x sin θ)

)
(5)
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where the coordinate origin corresponds to the window center and θ = 40◦. (This
sinusoid has a period of 10 pixels, which roughly approximates the ridge period in the
fingerprint image used in Section 5.) With the sinusoid, we see that increasing the
window size from 9×9 to 19×19 cuts the standard deviation of the angle calculation
by at least one half (and by as much as two thirds for low noise levels).

Let us next consider the tangent consistency score EN . To be a good predictor of
angle reliability, the value of EN should correlate closely to the standard deviation of
the angle calculation. If we compare values of EN in Table 1 (a) against those in (b),
we see that for any fixed angle standard deviation level the corresponding mean EN

values in (a) are smaller than those in (b). This is expected and simply means that
the larger window can tolerate larger errors and still keep the same angle calculation
variance. It is more meaningful to compare the results from the smoothed edge with
the sinusoidal at the same window size (i.e., compare Table 1 (a) with Table 2 (a),
and Table 1 (b) with Table 2 (b)). Doing this we see that for any given angle standard
deviation value, the corresponding mean EN values are within 15% across the tables.
For example, suppose we want to consider the calculated tangent angle reliable if the
standard deviation is less than 5◦. Then for the 9× 9 window, the angle is reliable if
the value of EN is less than about 0.47, regardless of whether we look at the single
smoothed edge (Table 1 (a)) or the sinusoid (Table 2 (a)). Thus we can use the value
of EN as a measure of angle reliability, independent of the image structure. Similarly,
for the 19 × 19 window, the 5◦ standard deviation value corresponds to a EN score
of about 0.68.

Of course, for any one trial the value EN is a random variable, so its variance
is important as well. For example, for the 19 × 19 window, the standard deviation
of EN with mean value 0.68 is 0.04. Thus if the observed value for EN is less than
0.6, then with better than 97% probability the noise is in the acceptable range. For
smaller windows the variance of EN is larger, so the estimate is less tight. For EN

with mean value of 0.47 in the 9× 9 window case, the standard deviation is 0.07, so
to reach the 97% assurance level we need EN < 0.34.

Consider now the contrast score CN . In the smoothed edge case, comparing the
results from the small window to the large window shows that for any given noise
level the CN score drops. This is correct since the larger window contains a larger
percentage of flat (zero contrast) area. (Recall that the CN score is normalized by
the window size.) For the sinusoid we see no difference between the CN scores for the
small versus large window, also a correct result. It is somewhat surprising that the
CN score for the small window, smoothed edge (Table 1 (a)) is larger than the CN

score for the sinusoids. However, the edge is much steeper than the sinusoid slope,
and for the small window the edge fills a significant amount of the total area. Of
more importance is the relative insensitivity of the CN score with respect to the noise
level, which is evident from the graphs of CN provided in Figs. 5 and 6. Also the
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standard deviation of CN is less than 10%, so the CN score is a reasonable predictor
of the underlying (noise-free) image contrast.

As a final comment, note that an edge is not required for the tangent calculation
to return meaningful information. Indeed, the surface may be any for which the level
curves are defined (i.e., any inclined surface).

4 Curvature vector calculation

4.1 Problem formulation

Let us now consider the problem of calculating curvature from level curves. Most pre-
vious work on image curvature has been restricted to calculating curvature magnitude
from a given boundary curve [8, 9]. In this approach one first uses an edge detection
algorithm to locate the image boundary, then pieces the boundary together (using,
for example, a chain code algorithm), and then approximates the second derivative of
the resulting (1-dimensional) curve. Conversely, our approach uses the results of the
tangent calculation only, without any intermediate processing. Moreover, although
our procedure works along single edges (especially if one incorporates the extensions
suggested in Section 4.6), it works best on striated images such as fingerprints, where
it can use in the calculations data from several adjacent level curves.

Refer back to Fig. 1, and consider the curvature at the point P . We have at our
disposal not only the level curve through P , but also the adjacent level curves, which
we want to include in our calculation. Notice that the magnitude of the curvature
changes as one moves between level curves, increasing as one moves closer to the
curvature center, and decreasing as one moves farther away. Similarly, as one moves
along a level curve, the magnitude of the curvature is (or is nearly) constant, but the
direction of the curvature vector (towards the center of the curvature) varies. Thus
we see that the curvature vector is not constant in any neighborhood of P . The
curvature center, however, is (or is nearly) constant. So instead of trying to find an
average value for the curvature vector directly, we calculate first an average value for
the curvature center. Then the curvature vector can be calculated from the relation
~r ′′(0) = −−→PPc/‖−−→PPc‖2, where Pc denotes the curvature center.

The curvature center lies on the line L through P that is perpendicular to the
level curve tangent vector at P . Since we can calculate the tangent vector using the
technique discussed in Section 3, we need only calculate the position of Pc on the
line L. To this end choose another point near P which is not on L. If this new
point is close enough to P then we expect the two points to share the same curvature
center. Construct a line through the second point perpendicular to its tangent. The
curvature center Pc is on both lines and is therefore given by the intersection of the
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two lines. (If the lines are parallel then the curvature is zero and we consider the
point Pc to be at infinity.)

Let us expand this idea to a larger region. In Fig. 7 there are nine points (P1, P2,
. . . , P9) with associated tangent vectors (~u1, ~u2, . . . , ~u9) inside a dashed rectangle
called the curvature window. (The size of the curvature window depends upon the
application, but is generally several times larger than the tangent window.) Now we
want to find a point Pc that can be regarded as the curvature center for all points
Pk inside the curvature window. In particular, each radius vector −−→PkPc should be
perpendicular to the associated tangent vector ~uk, i.e.,〈−−→PkPc, ~u

k
〉

= 0 for k = 1, 2, . . . , 9 (6)

Then the curvature vector at the center of the window would be −−→P5Pc/‖−−→P5Pc‖2.
Of course, it is unlikely that the nine lines will intersect in a point, so we cannot

expect there to be a point Pc satisfying the orthogonality conditions of Eq. 6. Let us
find instead a point Pc such that each radius vector −−→PkPc in the curvature window is
nearly orthogonal to the corresponding tangent vector ~uk. But how to quantify the
concept of “nearly orthogonal”? We consider two different formulations. The first
formulation is simple to implement, but is unstable if the tangent vectors are nearly
parallel. The second formulation does not suffer from this instability, but is more
difficult to implement.

It is interesting to note that similar problems arise in the application of computer
vision to mobile robots [16, 17, 18, 19]. Objects in successive image frames appear to
move outward as the robot moves towards them (pure translation). The point from
which the motion seems to originate is called the focus of expansion (FOE). Lines
drawn through the objects in their direction of apparent motion should all intersect
at the FOE. This doesn’t occur, of course, due to noise and quantization errors. So
given the lines of motion, the problem is to find a point which is as close as possible
to all the lines. This is equivalent to the problem that results from using the first
orthogonality formulation described below.

4.2 First formulation of orthogonality condition

Each pair (Pk, ~u
k) defines a line on which we would like the center to lie—the line

Lk that runs through Pk and is perpendicular to ~uk. Let Pc be a candidate point for
the curvature center, and let d(Pc,L

k) be the perpendicular distance from Pc to the
line Lk, as illustrated in Fig. 8. The point Pc that we select as the actual curvature
center is the point that minimizes the sum of the square of these distances, i.e.,

min
Pc

n∑
k=1

〈−−→PkPc, ~u
k〉2 (7)
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where n is the number of points in the curvature window. Here we have assumed
that the ~uk are unit vectors, although we will later relax this restriction. In this
formulation (Eq. 7), points Pk that are far from Pc have a greater weight in the sum
than those close to Pc. The advantage in this is that the tangent vector calculation
is more reliable in regions of shallow curvature, so it is natural to weight points
away from the curvature center more heavily. Unfortunately, moving the point Pc in
towards the curvature window will generally reduce the sum as a whole (since this
reduces the size of the vectors −−→PkPc). Therefore this formulation tends to pull the
curvature center inward, increasing the calculated curvature. This is related to the
instability problem discussed below.

But let us first derive an explicit solution to Eq. 7. Impose a coordinate system
on the plane and consider points in the plane as position vectors. Let ~uk = (ak, bk)

T ,
~Pc = (x, y)T , and rk = 〈~Pk, ~u

k〉. Furthermore, let G(~Pc) = G(x, y) be the function
being minimized in Eq. 7. Then

G(x, y) =
n∑

k=1

(rk − akx− bky)2

= Ax2 + By2 + 2Cxy − 2Dx− 2Ey + M (8)

where A =
∑n

k=1 a2
k, B =

∑n
k=1 b2

k, C =
∑n

k=1 akbk, D =
∑n

k=1 akrk, E =
∑n

k=1 bkrk,
and M =

∑n
k=1 r2

k.
The minimization of G(x, y) requires the partial derivatives Gx = Gy = 0, so

Gx(x, y) = 2Ax + 2Cy − 2D = 0

Gy(x, y) = 2By + 2Cx− 2E = 0
(9)

In matrix form this becomes(
A C
C B

)(
x
y

)
=

(
D
E

)
(10)

Solving explicitly gives

~Pc =

(
x
y

)
=

1

AB − C2

(
B −C
−C A

)(
D
E

)
, (11)

provided that the discriminant AB−C2 6= 0, in which case this is the unique solution
to the minimization problem. On the other hand, the discriminant is zero only if all
the tangent vectors ~uk are parallel, in which case the curvature is zero and we would
like the center point ~Pc to be placed at infinity.
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Unfortunately, this method is unstable if the tangent vectors are nearly parallel.
To see this, consider first the case where the tangent vectors are all exactly parallel.
Then Eq. 7 attains its minimum value along the entire line through the center of the
curvature window that is perpendicular to the tangent vectors’ direction. We would
like to select the minimization point to be infinity, but from Eq. 7 any point along
this line works as well. Now rotate any of the tangent vectors by a small amount, so
that the tangent vectors are not all parallel. Then the discriminant AB −C2 6= 0, so
there is a unique solution, but the discriminant is small so the solution is unstable. In
particular, even though the solution will lie close to the aforementioned line, it will not
necessarily lie near infinity. Moreover, since the formulation penalizes large distances,
it is likely that the solution will lie near the center of the curvature window. This
would imply a very large curvature, even though the tangent vectors are only slightly
perturbed from the parallel condition indicative of zero curvature. Experimental
results confirm that this effect is a serious weakness of this formulation.

4.3 Second formulation of orthogonality condition

So we need a different formulation for the orthogonality condition. Let ~vk be a unit
vector perpendicular to −−→PkPc, and define ~ek = ~uk − 〈~uk, ~vk〉~vk as illustrated in Fig. 9.
Now pick Pc to minimize

min
Pc

n∑
k=1

‖~ek‖2 = min
Pc

n∑
k=1

〈
~uk,

−−→PkPc

‖−−→PkPc‖

〉2

(12)

This formulation weights each point equally, but is more complicated than the
formulation of Eq. 7. In particular, notice that this new formulation suffers from
discontinuities at Pc = Pk for each k = 1, 2, . . . , n. However, let us consider the
situation where the center point Pc is far from the curvature window, in which case
the terms ‖−−→PkPc‖ are nearly identical. Let us place our coordinate system origin at

the center of the curvature window and approximate each term ‖−−→PkPc‖ by ‖~Pc‖. We
then have the simplified formulation

min
Pc

n∑
k=1

〈
~uk,−−→PkPc

〉2

‖~Pc‖2
. (13)

Introducing A, B, C, D, E, and M as in Eq. 8 yields the minimization function

G̃(x, y) =
Ax2 + By2 + 2Cxy − 2Dx− 2Ey + M

x2 + y2
. (14)

We want to find the global minimum of this function on the xy-plane. A necessary
condition for a local minimum is that the directional derivatives in the radial and
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angular directions be equal to zero. So let us write G̃ in polar coordinates (x = r cos θ,
y = r sin θ):

G̃(r, θ) = A(cos θ)2 + B(sin θ)2 + 2C cos θ sin θ

+
−2Dr cos θ − 2Er sin θ + M

r2
. (15)

The partial derivatives are given by

G̃r(r, θ) =
2Dr2 cos θ + 2Er2 sin θ − 2Mr

r4
(16)

and

G̃θ(r, θ) = −2A cos θ sin θ + 2B cos θ sin θ + 2C
(
(cos θ)2 − (sin θ)2

)
+

2D sin θ − 2E cos θ

r
. (17)

Setting G̃r = 0 and G̃θ = 0, simplifying, and converting back to rectangular coordi-
nates produces the requirements

Dx + Ey = M, (18)

(B − A)xy + C(x2 − y2) + Dy − Ex = 0. (19)

If M is not zero then at least one of D or E will be non-zero, so these two equations
can be combined to yield a quadratic equation in one variable. The (at most) two
roots of this quadratic combine with Eq. 18 to produce (at most) two candidate points
for local minima of G̃. It is also possible that the global minimum of G̃ is attained
at infinity. Note that

lim
r←∞

G̃(r, θ) = A(cos θ)2 + B(sin θ)2 + 2C cos θ sin θ, (20)

which can be written

lim
r←∞

G̃(r, θ) = (cos θ, sin θ)

(
A C
C B

)(
cos θ
sin θ

)
. (21)

Comparing to Eq. 3 and Eq. 4 shows that the (boundary) minimum value at infinity
is given by the smaller matrix eigenvalue, namely

λ =
1

2

(
(A + B)−

√
(A−B)2 + 4C2

)
. (22)
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(Notice that Eq. 13 implies that λ ≥ 0.) One now compares this value with the value
of G̃ evaluated at the (at most) two candidate points found previously. The global
minimum is the smallest of these three values, and the curvature center is at the
corresponding point.

If M is zero, then the curvature center should be placed at the center of the
curvature window (infinite curvature). However, M = 0 implies that D = 0 and
E = 0 as well. Introducing this into Eq. 14 shows that the minimizing set consists of
an entire line through the center of the curvature window. We can therefore expect the
same type of instability in this case as we had for the first orthogonality formulation
when the curvature was near zero. Moreover, this second formulation will tend to
force the calculated curvature center away from the origin because if M 6= 0 then G̃
has a pole of order 2 at the origin. Thus the results using the simplified formulation of
Eq. 13 are unsatisfactory for high curvature situations. (This is expected, of course,
since the simplified formulation is based on the assumption that the curvature center
Pc is far from the curvature window.)

4.4 Combining the two orthogonality formulations

Fig. 10 shows the results of applying the two orthogonality formulations to noisy
images. For this example we used a curvature window consisting of 9 tangent vector
nodes, laid out in a 3× 3 grid as in Fig. 7. Both the row and column spacing was set
to 10 pixels. We fixed a curvature center point Pc and calculated the ideal tangent
direction at each of the 9 nodes. The distance of the point Pc from the center of the
curvature window determines the magnitude of the curvature vector −−→P5Pc/‖−−→P5Pc‖2

(where P5 is the window center), and the orientation of Pc relative to the fixed 3× 3
tangent node grid determines the angular component of the curvature vector.

Both orthogonality formulations produced perfect results on ideal data, so we in-
troduced noise by rotating the 9 tangent directions separately by random amounts.
The rotations were determined from a sequence of computer generated zero-mean
uncorrelated Gaussian random variables. The noise level was controlled by adjusting
the standard deviation of the random variables to 1◦, 3◦, or 5◦. The curvature calcu-
lations were performed using the perturbed tangent directions. The random variables
were then resampled to generate new tangent perturbations, and the process was re-
peated. Each point in Fig. 10 represents the mean curvature value from 105 trials.
The abscissa in Fig. 10 gauges the original (before noise) curvature, while the ordi-
nate provides the calculated curvature. (The results were found to be independent
of the angular component of the curvature vector.) The points marked with +’s are
the results using the first orthogonality formulation, while 4’s mark the results using
the second orthogonality formulation. There is one curve at each noise level for each
formulation.
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Ideally the data points in this graph should lie on the line of slope 1 through the
origin. However, in the low curvature region (10−3 to 10−2 pixels−1) the first orthog-
onality formulation produces exaggerated curvatures from noisy data, as expected.
The second formulation performs better across most of the curvature range, although
for curvatures near 1 pixel−1 the calculated values fall below the ideal values, as also
anticipated. Since the first formulation works well for high curvature situations, and
the second formulation works well for low curvature situations, it is natural to com-
bine the two formulations. Fig. 10 suggests that the first formulation be used for
curvatures above about 0.1 pixels−1, and the second formulation below. (The actual
curvature values are relative to the size of the curvature window. Here the radius of
the curvature window is roughly 10 pixels, so a curvature of 0.1 pixels−1 corresponds
to the curvature center ~Pc being positioned on the edge of the curvature window.)
Therefore we need an estimator for the curvature which is reliable (with respect to
noise) in some range around 0.1 pixels−1. Our experiments suggest that the value of
λ from Eq. 22 provides such an estimate. This value ranges between 0 if the tangent
vectors are parallel to n/2 if the tangent vectors are concentric about the center of
the curvature window (recall that n is the number of tangent vectors in the curvature
window). The examples presented in Section 5 use λ/n = 0.1 as the method crossover
point, i.e., if λ/n > 0.1 the first curvature formulation was used, otherwise the second.

Fig. 11 graphs λ/n under the conditions used to generate Fig. 10 (here n = 9).
We see that λ/n = 0.1 corresponds to a curvature of about 0.04 pixels−1, a little lower
than ideal, but still an acceptable method crossover point. Moreover, if one examines
the portion of the graph in Fig. 11 near curvature 0.1, one finds a small indentation in
the knee of the curve. This is due to discontinuities in Eq. 22 as the curvature center
~Pc approaches tangent vector nodes ~Pk. Since the tangent vector node spacing is 10
pixels, the curvature center enters the curvature window at curvatures between 0.0707
and 0.1 pixels−1, depending on the angular component of the curvature vector. Unlike
the curvature calculations in Fig. 10, the values graphed in Fig. 11 are dependent
on the angular component of the curvature vector, though only in the curvature
range between about 0.05 and 0.12 pixels−1. (In Fig. 11 the angular component of
the curvature vectors is fixed at 57◦.) Thus setting the method crossover point at
λ/n = 0.1 is in fact a reasonable choice.

If the minimization error (G(x, y) or G̃(x, y)) is not zero, then the curvature
center determined using the first method will lie closer to the curvature window than
the curvature center determined using the second method. There will generally be,
therefore, some discontinuity in the calculated curvature at the method crossover
point. If necessary, one can force continuity by using a weighted average of the two
calculated curvature centers over a transition region. For example, let ~Pc1 be the
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curvature center calculated by the first method, ~Pc2 by the second. Then use

~Pc =


~Pc1 if λ > 0.12n

λ−0.08n
0.04n

~Pc1 + 0.12n−λ
0.04n

~Pc2 if 0.08n ≤ λ ≤ 0.12n

~Pc2 if λ < 0.08n

As an alternative to combining the two curvature formulations, one can explore
the possibility of using Eq. 12 directly. Minimizing this function requires numerical
methods, which may be poorly behaved in high curvature situations (due to discon-
tinuities at Pc = Pk). This is left for future study.

4.5 Controlled tests

In order to study the behavior of the combined curvature calculation method in a
controlled fashion, we repeated the experiment of Section 4.4 using λ/n to automat-
ically select the orthogonality formulation. The results are gathered in Table 3. The
curvature window consisted of 9 tangent vector nodes, laid out in a 3 × 3 grid with
both row and column spacing set to 10 pixels. As noted before, the dependence of
the curvature calculation on the orientation of the curvature vector (directional com-
ponent) was found to be minimal. Therefore only the dependence on the distance
component (“Noise-free Curvature”) is listed in Table 3.

The second column in Table 3 lists the noise level introduced into the data (stan-
dard deviations of 1◦, 3◦, or 5◦). For most curvature/noise level combinations, 104

trials were performed, but in several instances 106 trials were necessary to provide
the desired precision. The resulting statistics are presented in columns 3 through 5.

The results are divided into three columns: curvature mean error, curvature stan-
dard deviation, and direction standard deviation. Recall that the result of the curva-
ture calculation is the curvature vector, with magnitude equal to the reciprocal of the
curvature radius and direction towards the center of the curvature. The curvature
mean error is the difference of the mean value of the calculated curvature magnitude
from the curvature before noise, expressed as a percentage with respect to the be-
fore noise value. The curvature standard deviation is the standard deviation of the
curvature magnitude about its mean value. The difference between the calculated
curvature direction mean value and the noise-free direction was insignificant. The
standard deviation of the direction component was significant, however, and is listed
in the last column of Table 3.

The orthogonality formulation used for curvature calculation was selected auto-
matically as detailed in Section 4.4, using λ/n = 0.1 as the method crossover point.
In these tests the curvature at the method crossover point was close to 0.04 pixels−1.
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This means that the method of Section 4.2 was used in those cases where the cur-
vature was more than 0.05 pixels−1, and the method of Section 4.3 was used where
the curvature was less than 0.03 pixels−1. Near 0.04 pixels−1, the algorithm chosen
depended upon the noise sample. The trials at noise-free curvature of 0.04 pixels−1

had each method selected roughly half the time. The results in the range below 0.03
pixels−1 are most straightforward, so we shall discuss them first.

The calculation errors were nearly independent of curvature in the range between
0.001 and 0.03 pixels−1. The curvature mean value is generally slightly below the
true value, and the error increases with increased noise. Notice that in this range the
standard deviation of both the curvature magnitude and direction increase linearly
with standard deviation of the added noise. No results are listed for curvature less
than 0.001 pixels−1 because extremely shallow curvature cannot be separated from
noise. Even at a curvature of 0.001 pixels−1, the tangent directions in the curvature
window vary from the center direction by at most 0.58◦. Rotate these directions
by noise with standard deviation as small as even 1◦ and the original curvature is
completely lost. The net result is that for extremely shallow curvature (say less
than 0.001 pixels−1), the curvature calculation reports a small curvature, but it is not
possible to distinguish between two different but very small curvatures in the presence
of noise. Along the same lines, the returned direction in the small curvature situation
has meaning only modulo 180◦. For example, consider Fig. 12, which illustrates two
curves ((a) and (b)) with small curvature. Curve (a) has curvature direction near 90◦,
whereas curve (b) has curvature direction near 270◦. In the presence of noise, these
two curves cannot be distinguished—even though their curvature directions differ by
180◦. To allow proper comparisons, it is necessary to restrict the curvature directions
to a fixed 180◦ range, say between 0◦ and 180◦, and to introduce negative curvatures.
If the curvature direction is inside the restricted range, no change is made. However,
if the curvature direction is outside this range, then we subtract 180◦ degrees from
the curvature direction and multiply the curvature magnitude by −1. For example,
with this modification the curvature vector of curve (a) is unchanged, but curve (b)
would have curvature direction near 90◦ and a (small) negative curvature.

As the curvature increases from 0.03 through 0.04 pixels−1, the curvature calcula-
tion method used shifts from the method of Section 4.3 to the method of Section 4.2,
until for curvatures ≥ 0.05 pixels−1 the method of Section 4.2 is used almost exclu-
sively. We see that the variance in the direction result increases as the curvature
center point Pc moves in towards the curvature window. The curvature magnitude
results, on the other hand, actually improve as the curvature increases, until the cur-
vature reaches 0.1 pixels−1. The dimensions of the curvature window are such that
at this point the curvature center is just inside the curvature window. After this
point the results degrade. In high curvature situations there are problems analogous
to the problems at very low curvature. For example, suppose the true curvature is 1
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pixel−1. Then the curvature center is only 1 pixel away from the center of the cur-
vature window. Since the curvature magnitude and direction is measured relative to
the window center, small changes in the location of Pc have dramatic changes in the
curvature values. For example, a location error of only 1 pixel can move Pc from its
original location to the exact center of the curvature window, at which point the cur-
vature magnitude is infinite and the curvature direction is indeterminate. However,
this error cannot change the calculated curvature from a large value to a small value.
We can say that the curvature is very large, but we can not say exactly how large.
That is to say, the distribution of the curvature magnitude about the mean is not
symmetric. Consider, for example, the test from the last line of Table 3, where the
curvature mean value is 1.27 pixels−1 with standard deviation of 2.6 pixels−1. In this
test only 27% of the trials were above the mean value, indicating that the curvature
values beneath 1.27 pixels−1 were mostly not far from that value. Indeed, the median
value for this test was 0.92 pixels−1, and fewer than 4% of the values were below 0.5
pixels−1.

4.6 Extensions

The contrast (CN) and consistency (EN) measures of the tangent direction from
Section 3.4 give a measure of the reliability of the directional information. It is
natural, therefore, to weight the tangent directions in the minimization problems
of Eq. 7, 12, and 13 according to their reliability. In particular, one can introduce
weights w2

k into Eq. 7 by

min
Pc

n∑
k=1

w2
k〈
−−→PkPc, ~u

k〉2. (23)

For example, we can set wk = 0 if the contrast score CN for tangent vector uk is too
small, and otherwise set wk = 1− EN .

Let us rewrite Eq. 23 as

min
Pc

n∑
k=1

〈−−→PkPc, wk~u
k〉2

where each weight wk becomes the magnitude component of the tangent vector ~uk.
Although we originally specified in Eq. 7 that the vectors ~uk be unit vectors, this
restriction is not used in the derivation of the solution. Working through the deriva-
tion with ~uk replaced by wk~u

k, we find that the solution to Eq. 23 is given by Eq. 11
but with A =

∑n
k=1(wkak)

2, B =
∑n

k=1(wkbk)
2, C =

∑n
k=1 w2

kakbk, D =
∑n

k=1 w2
kakrk,

E =
∑n

k=1 w2
kbkrk, and M =

∑n
k=1(wkrk)

2. Weighting can be added to Eq. 12 and 13
in a similar fashion.
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One can generally improve the curvature results by averaging the tangent vectors
before the curvature calculation takes place. For example, consider images for which
the tangent vectors form a smooth flow, with a handful of singular points. One wants
to average the tangent vectors in the smooth regions without losing the singular
points. Kawagoe and Tojo [3], working on fingerprint classification, used an effective
relaxation technique along with singular region detection. Alternately, one may be
able to adapt the convex projection technique of Simard and Mailloux [20] to this
problem.

5 Examples

In our experimental system images are input from a standard video camera and dig-
itized using a Data Translation IBM-AT compatible frame grabber. The digitized
images have up to 256 grey levels and a full screen image is 512 pixel columns by 480
pixel rows. The pixel aspect ratio is such that a rectangle 4 columns wide by 5 rows
high appears square. Since this makes the sample node grid non-square, a modifi-
cation is required to the point normal calculation. The details are straightforward,
however, and are left to the reader.

5.1 Tangent examples

One sample use of the tangent calculation is in fingerprint identification. Ridge flow
directions must be established in order to locate both minutiae (ridge endings and
bifurcations) and flow singularities (cores and deltas). An inked fingerprint is shown
in Fig. 13. Notice the hole on the right side and the poor contrast due to over inking
at the top and lower left side. We applied the algorithm of Section 3 to this image
using tangent windows of 19 rows by 15 columns. (When the pixel aspect ratio of
the frame grabber board is taken into account, this window is approximately square.)
The window size is chosen large enough so that noise can be controlled, but small
enough so that curvature inside the window is negligible. We have found this size
window, which will generally contain 2 ridges, to work well in practice.

Fig. 14 shows the results of the tangent calculation for each point on a 10 row by
8 column grid. (Compare also to examples in [10, 11].) The corresponding tangent
direction is indicated by a line segment unless the contrast or consistency is poor
(refer to Section 3.4), in which case the point is left unmarked. This gives a rough
indication of which regions of the print are of good quality (marked) and poor quality
(unmarked). In our actual experimental system the good regions are further classified
by encoding the line segments with color. Notice that the hole on the right side is left
unmarked, as are sections of the top and bottom of the print. Also notice that there
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are no tangent directions marked outside the fingerprint (in the background on the
extreme left and right). We see that in addition to giving the ridge flow direction,
the tangent calculation can also be used for fingerprint segmentation.

A more general use of the tangent calculation is for adaptive filtering. For example,
if one wishes to enhance edges in an image, then knowledge of the tangent direction
allows one to select an appropriate orientation specific filter. In the following examples
we used 8 convolution-type filters (one each for 0◦, 22.5◦, 45◦, . . . , 157.5◦). The kernel
of the filter for the direction 22.5◦ was

0 0 −8 −6 0 0 0
−1 −9 −8 −1 0 0 0

0 0 0 0 0 2 4
0 0 0 2 11 18 7
0 2 11 18 11 2 0
7 18 11 2 0 0 0
4 2 0 0 0 0 0
0 0 0 −1 −8 −9 −1
0 0 0 −6 −8 0 0

with the resulting value scaled via division by 66. Each filter exhibits low-pass
(smoothing) behavior in the specified direction and high-pass (sharpening) behav-
ior in the perpendicular direction. We then used the following procedure. At each
point in the image, calculate the tangent direction along with the contrast and con-
sistency scores. If the contrast and consistency are sufficiently good (as determined
by CN and EN), then select and apply the filter which has orientation corresponding
to the tangent direction. If the contrast or consistency of the region is poor, then
leave the image value at that point untouched.

The results of apply this procedure to the fingerprint of Fig 13 is shown in Fig. 15.
The tangent averaging window was 19 rows by 15 columns. Regions were considered
to be of poor quality (and hence left untouched) if the normalized contrast score CN

was less than 0.07 or if the consistency error EN was larger than 0.7. Repetition of
the filtering allows good regions to expand into poor regions. (This effect was also
noticed by Peli [5], who obtained similar results using frequency domain analysis and
filtering.) Fig. 16 shows the results after 8 iterations of the filter. To prevent over-
filtering, the first 6 passes filtered only those points which were not modified (due to
poor contrast or tangent consistency) in the preceding passes. After the sixth pass
most noise had been eliminated from the image, so for the final two passes a smaller
9× 7 tangent window was used for increased directional precision.

As another example of the use of this directional enhancement, consider Fig. 17
which is an image of a porous membrane obtained from a scanning electron micro-
scope. For experimental work we needed to determine the pore volume fraction.
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Thresholding the image is made difficult by the vagueness of the pore boundaries.
Two passes of this directional filtering gives the image in Fig. 18. Thresholding this
image yields pore fractions which agree to within 1% with values obtained by manual
inspection.

5.2 Curvature examples

Regions of high curvature denote singular regions in images. Refer back to the fin-
gerprint image of Fig. 13. The most notable regions are the core (near the center)
and the two deltas (below and on either side of the core). Fig. 19 illustrates the
results of the curvature calculation. (Compare to [10].) The curvature is displayed
on a mesh of 20 rows by 16 columns. (This mesh size was chosen for presentation
purposes; a denser grid makes the results more difficult to read.) Curvature is not
calculated in poor regions (as defined by the tangent calculations), which explains
the lack of markings in the hole on the right side and in the lower left corner. Each
curvature window consisted of a 3 × 3 array of tangent vectors from Fig. 14. If the
calculated curvature radius is less than 150 pixels (roughly 1/3 the image height),
then the calculation window center is marked with a ‘+’ and a radial line is drawn
to the curvature center, marked with a ‘◦’. If the curvature radius is larger than 150
pixels, then a short line segment is drawn at the calculation window center in the
direction perpendicular to the calculated curvature direction. (Most of the curvature
radii are quite large; if every radial line were drawn then the image would be a tangle
of lines.)

Careful examination of this figure reveals that the regions with the largest cur-
vature (shortest radial lines) are the deltas and the areas just above and below the
core. This is borne out in the curvature magnitude contour plot of Fig. 20. Actually,
there is an implicit assumption in the curvature calculation that the tangent flow is
continuous. This assumption is violated across the fingerprint deltas, but nonetheless
the algorithm returns the desired result: large curvature.

The curvature can be used to locate features in a wide array of images. Fig. 21
shows the curvature results for a section of a printed circuited board. The curvature
accurately marks the circular wire pads and the resistor elements. In addition, the
tangent calculation has distinguished the circuit trace boundaries from the featureless
background board.

As a final example, Fig. 22 shows curvature for a low contrast radiograph of a
steel part with 4 shallow, oval slots (simulating flaws). Due to the poor contrast, only
3 of the 4 slots are definitely detectable (the second slot from the left is detectable
mainly due to the presence of the other three slots). High curvature locates the 3
detectable slots.
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6 Summary

In this paper we have presented algorithms for the extraction of tangent directions
and curvatures of level curves of images. The effects of noise on these algorithms were
studied under controlled conditions using simulated data and the usefulness of the
tangent and curvature information was shown by examples with several real images.

The tangent direction is extracted by a least-squares minimization over the surface
normals (calculated for each 2×2 pixel neighborhood) in the averaging window. Even
with a signal-to-noise ratio (defined as the ratio of the variance of the original image
to the variance of the noise) as low as 10, a single edge passing through the center of
a 9× 9 window results in a tangent angle calculation having mean value accurate to
within 3◦. The standard deviation of this calculation is less than 3.5◦, a value which
drops to 1.3◦ when the edge is replaced with a sinusoid passing through a 19 × 19
window. The minimization error from the tangent calculation can be used to estimate
the reliability of the calculated tangent direction. This error grows with the variance
of the calculated tangent direction, and has a standard deviation < 10% for the larger
19× 19 window.

The usefulness of these calculations were illustrated by using the tangent infor-
mation to select orientation sensitive filters for edge enhancement on images of a
fingerprint and of the microstructure of a porous membrane. The contrast and con-
sistency scores from the tangent calculation also effectively segmented the fingerprint
and a section from a printed circuit board.

Unlike most previous work on this topic, the curvature calculation does not require
a (single) parameterized curve, but works instead directly on the tangent directions
across adjacent level curves. The curvature is found by fitting concentric circles to
the tangent directions via least-squares minimization. Accuracy and reliability were
studied by controlled tests with simulated noise. The curvature information can be
used for feature detection and identification, as illustrated by results showing high
curvature locating cores and deltas on a fingerprint, circular pads and circuit elements
of a printed circuit, and slots simulating flaws in a radiograph of a steel part.
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FIGURE CAPTIONS

Fig. 1 Schematic showing three level curves with associated tangent and curvature
vectors.

Fig. 2 Illustration of a smooth approximation to a unit step function with edge
along the x-axis. Also illustrated are several normal vectors to this surface.

Fig. 3 Local coordinate system imposed onto each 2x2 neighborhood.

Fig. 4 Tangent window pixel values for a smooth edge passing through the center
of the window at an angle of 40◦.

Fig. 5 Graph showing results of tangent calculations for an smoothed edge (see
Fig. 4) passing through the center of a 9×9 tangent window at an angle of 40◦. Noise
was introduced by adding a sequence of computer generated zero-mean uncorrelated
Gaussian random variables. The tangent direction (in degrees), normalized error
(EN), and normalized contrast score (CN) are displayed as functions of the signal to
noise ratio. The error bars mark one standard deviation.

Fig. 6 Graph showing results of tangent calculations for a sinusoid (see Eq. 5)
passing through the center of a 19 × 19 tangent window at an angle of 40◦. Noise
was introduced by adding a sequence of computer generated zero-mean uncorrelated
Gaussian random variables. The tangent direction (in degrees), normalized error
(EN), and normalized contrast score (CN) are displayed as functions of the signal to
noise ratio. The error bars mark one standard deviation.

Fig. 7 Illustration of placement of curvature center point Pc.

Fig. 8 Illustration of the first orthogonality formulation for curvature calculation.

Fig. 9 Illustration of the second orthogonality formulation for curvature calculation.
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Fig. 10 Calculated mean curvature as a function of noise-free (“true”) curvature and
standard deviation (1◦, 3◦, or 5◦) of added Gaussian noise. The results using the first
curvature formulation (Section 4.2) are marked by pluses, and the results using the
second curvature formulation (Section 4.3) are marked by triangles. A 3x3 tangent
grid with a 10 pixel internal spacing was used for these calculations.

Fig. 11 Normalized infinity error, λ/n (see Eq. 22), as a function of noise-free
(“true”) curvature and standard deviation (1◦, 3◦, or 5◦) of added Gaussian noise. A
3x3 tangent grid with a 10 pixel internal spacing was used for these calculation. The
angle of the noise-free curvature vector with respect to this grid was fixed at 57◦.

Fig. 12 Illustration of two shallow curves that are indistinguishable in the presence
of noise. The curvature vector direction in such situations has meaning only modulo
180◦.

Fig. 13 Image of an inked fingerprint. Notice the missing hole on the right hand
side and the poor contrast at the top.

Fig. 14 Tangent directions calculated on a 10 row by 8 column grid using a 19 row by
15 column tangent averaging window. Unmarked regions indicate either the contrast
or the consistency is poor.

Fig. 15 Result of one pass of the directional filter. The tangent window was 19 rows
by 15 columns. Regions were left unprocessed if the normalized contrast score was
less than 0.07 or if the normalized consistency error was larger than 0.7.

Fig. 16 Result after 8 passes of directional filter. Each of the first 6 iterations only
modified pixels untouched by preceding passes. The last two passes modified low
contrast regions using a 9 row by 7 column tangent window. The smaller window
allows for the capture of tangents in high curvature regions.

Fig. 17 Scanning electron microscope image of a membrane. Dark areas are pores
in the membrane.
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Fig. 18 Membrane image after two passes of directional filter using 15 row by
11 column tangent window. Thresholding this image gives pore volume fraction in
agreement with results from manual inspection.

Fig. 19 Fingerprint overlaid with results from curvature calculation. Points with
curvature radius of less than 150 pixels are marked with a ‘+’, and a radial line is
drawn from the point to the calculated curvature center, marked with a ‘◦’.

Fig. 20 Curvature magnitude contours (units: 0.01 × (pixels)−1) overlaid on the
fingerprint image. The high curvature values correctly mark the fingerprint core in
the center of the image and the deltas below on either side.

Fig. 21 Section of a printed circuit board overlaid with calculated curvature. High
curvature locates circular pads and resistor elements.

Fig. 22 (a) Radiograph of a steel specimen with 4 oval slots (which simulate flaws).
(b) Curvature overlay. High curvature locates 3 of the 4 slots.
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TABLE CAPTIONS

Table 1 Experimental results of tangent calculation for an smoothed edge passing
through the center of the tangent window at an angle of 40◦. Results in (a) are from a
9×9 window, (b) from a 19×19 window. Noise was introduced by adding a sequence
of computer generated zero-mean uncorrelated Gaussian random variables.

Table 2 Experimental results of tangent calculation for a sinusoidal wave passing
through the center of the tangent window at an angle of 40◦. Results in (a) are from a
9×9 window, (b) from a 19×19 window. Noise was introduced by adding a sequence
of computer generated zero-mean uncorrelated Gaussian random variables.

Table 3 Curvature calculation statistics at various curvature levels and noise mag-
nitudes. Noise was introduced by rotating the tangent directions using a sequence of
computer generated zero-mean uncorrelated Gaussian random variables. The curva-
ture units are pixels−1, direction units are degrees.
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Figure 1: Schematic showing three level curves with associated tangent and curvature
vectors.

Figure 2: Illustration of a smooth approximation to a unit step function with edge
along the x-axis. Also illustrated are several normal vectors to this surface.
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Figure 3: Local coordinate system imposed onto each 2x2 neighborhood.

80 80 80 80 80 80 81 84 95
80 80 80 80 80 81 85 100 150
80 80 80 80 81 86 107 157 172
80 80 80 82 88 116 161 173 175
80 81 82 91 128 165 174 175 176
81 83 95 140 168 174 176 176 176
84 99 149 170 175 176 176 176 176

106 156 171 175 176 176 176 176 176
161 172 175 176 176 176 176 176 176

Figure 4: Tangent window pixel values for a smooth edge passing through the center
of the window at an angle of 40◦.



Figure 5: Graph showing results of tangent calculations for an smoothed edge (see
Fig. 4) passing through the center of a 9×9 tangent window at an angle of 40◦. Noise
was introduced by adding a sequence of computer generated zero-mean uncorrelated
Gaussian random variables. The tangent direction (in degrees), normalized error
(EN), and normalized contrast score (CN) are displayed as functions of the signal to
noise ratio. The error bars mark one standard deviation.



Figure 6: Graph showing results of tangent calculations for a sinusoid (see Eq. 5)
passing through the center of a 19 × 19 tangent window at an angle of 40◦. Noise
was introduced by adding a sequence of computer generated zero-mean uncorrelated
Gaussian random variables. The tangent direction (in degrees), normalized error
(EN), and normalized contrast score (CN) are displayed as functions of the signal to
noise ratio. The error bars mark one standard deviation.
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Figure 7: Illustration of placement of curvature center point Pc.
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Figure 8: Illustration of the first orthogonality formulation for curvature calculation.
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Figure 10: Calculated mean curvature as a function of noise-free (“true”) curvature
and standard deviation (1◦, 3◦, or 5◦) of added Gaussian noise. The results using
the first curvature formulation (Section 4.2) are marked by pluses, and the results
using the second curvature formulation (Section 4.3) are marked by triangles. A 3x3
tangent grid with a 10 pixel internal spacing was used for these calculations.



Figure 11: Normalized infinity error, λ/n (see Eq. 22), as a function of noise-free
(“true”) curvature and standard deviation (1◦, 3◦, or 5◦) of added Gaussian noise. A
3x3 tangent grid with a 10 pixel internal spacing was used for these calculation. The
angle of the noise-free curvature vector with respect to this grid was fixed at 57◦.



Figure 12: Illustration of two shallow curves that are indistinguishable in the presence
of noise. The curvature vector direction in such situations has meaning only modulo
180◦.

Figure 13: Image of an inked fingerprint. Notice the missing hole on the right hand
side and the poor contrast at the top.



Figure 14: Tangent directions calculated on a 10 row by 8 column grid using a 19
row by 15 column tangent averaging window. Unmarked regions indicate either the
contrast or the consistency is poor.



Figure 15: Result of one pass of the directional filter. The tangent window was 19
rows by 15 columns. Regions were left unprocessed if the normalized contrast score
was less than 0.07 or if the normalized consistency error was larger than 0.7.



Figure 16: Result after 8 passes of directional filter. Each of the first 6 iterations
only modified pixels untouched by preceding passes. The last two passes modified
low contrast regions using a 9 row by 7 column tangent window. The smaller window
allows for the capture of tangents in high curvature regions.



Figure 17: Scanning electron microscope image of a membrane. Dark areas are pores
in the membrane.



Figure 18: Membrane image after two passes of directional filter using 15 row by
11 column tangent window. Thresholding this image gives pore volume fraction in
agreement with results from manual inspection.



Figure 19: Fingerprint overlaid with results from curvature calculation. Points with
curvature radius of less than 150 pixels are marked with a ‘+’, and a radial line is
drawn from the point to the calculated curvature center, marked with a ‘◦’.



Figure 20: Curvature magnitude contours (units: 0.01 × (pixels)−1) overlaid on the
fingerprint image. The high curvature values correctly mark the fingerprint core in
the center of the image and the deltas below on either side.



Figure 21: Section of a printed circuit board overlaid with calculated curvature. High
curvature locates circular pads and resistor elements.



(a)

(b)

Figure 22: (a) Radiograph of a steel specimen with 4 oval slots (which simulate flaws).
(b) Curvature overlay. High curvature locates 3 of the 4 slots.



Angle EN CN

SNR Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
No noise 39.6◦ – 0.00 – 0.15 –

100 39.6◦ 0.57◦ 0.06 0.01 0.16 0.01
50 39.6◦ 0.90◦ 0.11 0.02 0.17 0.01
25 39.6◦ 1.5◦ 0.20 0.04 0.19 0.01
10 39.6◦ 3.4◦ 0.38 0.06 0.24 0.02
5 39.7◦ 6.3◦ 0.54 0.08 0.34 0.04

(a)

Angle EN CN

SNR Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
No noise 39.4◦ – 0.00 – 0.07 –

100 39.4◦ 0.41◦ 0.14 0.01 0.08 0.00
50 39.4◦ 0.75◦ 0.23 0.02 0.09 0.00
25 39.4◦ 1.5◦ 0.38 0.03 0.11 0.01
10 39.4◦ 3.5◦ 0.61 0.04 0.17 0.01
5 39.6◦ 6.8◦ 0.75 0.04 0.28 0.02

(b)

Table 1: Experimental results of tangent calculation for an smoothed edge passing
through the center of the tangent window at an angle of 40◦. Results in (a) are from a
9×9 window, (b) from a 19×19 window. Noise was introduced by adding a sequence
of computer generated zero-mean uncorrelated Gaussian random variables.



Angle EN CN

SNR Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
No noise 39.7◦ – 0.00 – 0.11 –

100 39.8◦ 0.63◦ 0.05 0.01 0.11 0.00
50 39.8◦ 0.95◦ 0.09 0.02 0.12 0.00
25 39.8◦ 1.5◦ 0.17 0.03 0.13 0.01
10 39.8◦ 3.1◦ 0.34 0.06 0.16 0.01
5 39.9◦ 5.6◦ 0.50 0.07 0.22 0.02

(a)

Angle EN CN

SNR Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
No noise 39.9◦ – 0.00 – 0.11 –

100 39.8◦ 0.21◦ 0.05 0.00 0.11 0.00
50 39.8◦ 0.34◦ 0.10 0.01 0.12 0.00
25 39.8◦ 0.59◦ 0.18 0.01 0.13 0.00
10 39.8◦ 1.3◦ 0.35 0.03 0.16 0.01
5 39.9◦ 2.5◦ 0.52 0.03 0.22 0.01
2 39.9◦ 6.0◦ 0.72 0.04 0.39 0.03
1 40.5◦ 11◦ 0.83 0.04 0.68 0.05

(b)

Table 2: Experimental results of tangent calculation for a sinusoidal wave passing
through the center of the tangent window at an angle of 40◦. Results in (a) are
from a 9× 9 window, (b) from a 19× 19 window. Noise was introduced by adding a
sequence of computer generated zero-mean uncorrelated Gaussian random variables.



Calculation Results
Noise-free Noise Curvature Mean Curvature Direction
Curvature Std. Dev. Relative Error (%) Std. Dev. Std. Dev.

1◦ 0.2 0.0007 0.3
0.001 3◦ -1.8 0.0021 1.0

5◦ -1.8 0.0035 1.7
1◦ -0.1 0.0007 0.3

0.005 3◦ -0.2 0.0021 1.0
5◦ -1.2 0.0035 1.7
1◦ -0.1 0.0007 0.3

0.01 3◦ -0.3 0.0021 1.0
5◦ -1.2 0.0036 1.7
1◦ -0.1 0.0007 0.4

0.03 3◦ -0.4 0.0022 1.1
5◦ -1.2 0.0038 1.8
1◦ 0.2 0.0008 0.4

0.04 3◦ 2.0 0.0027 1.2
5◦ 5. 0.0050 2.0
1◦ 0.2 0.0008 0.4

0.05 3◦ 1.5 0.0023 1.3
5◦ 4. 0.0039 2.2
1◦ 0.1 0.0012 0.8

0.1 3◦ 0.6 0.0036 2.5
5◦ 2. 0.0061 4.1
1◦ 0.3 0.027 2.5

0.5 3◦ 2. 0.089 7.8
5◦ 8. 0.22 14.
1◦ 0.9 0.11 5.0

1.0 3◦ 11. 0.87 17.
5◦ 27. 2.6 36.

Table 3: Curvature calculation statistics at various curvature levels and noise mag-
nitudes. Noise was introduced by rotating the tangent directions from a sequence of
computer generated zero-mean uncorrelated Gaussian random variables. The curva-
ture units are pixels−1, direction units are degrees.
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